sábado, 7 de julio de 2012

Propiedades de los Líquidos

 Propiedades de los líquidos

Un liquido está formado por moléculas que están en movimiento constante y desordenado, y cada una de ellas chocan miles de millones de veces en un lapso muy pequeño. Pero, las intensas fuerzas de atracción entre cada molécula, o enlaces de hidrogeno llamados dipolo-dipolo, eluden el movimiento libre, además de producir una cercanía menor que en la que existe en un gas entre sus moléculas. Además de esto, los líquidos presentan características que los colocan entre el estado gaseoso completamente caótico y desordenado, y por otra parte al estado sólido de un liquido (congelado) se le llama ordenado. Por lo tanto podemos mencionar los tres estados del agua (liquido universal), sólido, gaseoso y liquido.



• COMPRESIÓN Y EXPANSIÓN
A los líquidos se les considera incomprensibles debido que dentro de ellos existen fuerzas extremas que entre sus moléculas las cuales se atraen, por otra parte cuando a un liquido se le aplica una presión su volumen no se ve afectado en gran cantidad, ya que sus moléculas tienen poco espacio entre si; por otra parte si aplicamos un cambio de temperatura a un líquido su volumen no sufrirá cambios considerables. Cabe señalar que cuando las moléculas de un líquido están en continuo aumento de movimiento es por causa del aumento de alguna temperatura que esté experimentando el mismo lo cual inclina al liquido a aumentar la distancia de sus moléculas, a pesar de esto las fuerzas de atracción que existen en el líquido se oponen a ese distanciamiento de sus moléculas.
• DIFUSIÓN
Al realizar la mezcla de dos líquidos, las moléculas de uno de ellos se difunde en todas las moléculas del otro liquido a mucho menor velocidad, cosa que en los gases no sucede. Sí deseamos ver la difusión de dos líquidos, se puede observar dejando caer una pequeña cantidad de tinta (china) en un poco de agua. Debido a que las moléculas en ambos líquidos están muy cerca, cada molécula conlleva una inmensidad de choques antes de alejarse, puede decirse que millones de choques. La distancia promedio que se genera en los choques se le llama trayectoria libre media y, en los gases es mas grande que en los líquidos, cabe señalar que esto sucede cuando las moléculas están bastantemente separadas. A pesar de lo que se menciona anteriormente hay constantes interrupciones en sus trayectorias moleculares, por lo que los líquidos se difunden mucho mas lentamente que los gases.
• FORMA Y VOLUMEN
En un liquido, las fuerzas de atracción son suficientemente agudas para limitar a las moléculas en su movimiento dentro de un volumen definido, a pesar de esto las moléculas no pueden guardar un estado fijo, es decir que las moléculas del líquido no permanecen en una sola posición. De tal forma que las moléculas, dentro de los limites del volumen del liquido, tienen la libertad de moverse unas alrededor de otras, a causa de esto, permiten que fluyan los líquidos. Aún cuando, los líquidos poseen un volumen definido, pero, debido a su capacidad para fluir, su forma depende del contorno del recipiente que los contiene.

VISCOSIDAD
Algunos líquidos, literalmente fluyen lentamente, mientras que otros fluyen con facilidad, la resistencia a fluir se conoce con el nombre de viscosidad. Si existe una mayor viscosidad, el liquido fluye mas lentamente. Los líquidos como la maleza y el aceite de los motores son relativamente viscosos; el agua y los líquidos orgánicos como el tetracloruro de carbono no lo son. La viscosidad puede medirse tomando en cuenta el tiempo que transcurre cuando cierta cantidad de un liquido fluye a través de un delgado tubo, bajo la fuerza de la gravedad. En otro método, se utilizan esferas de acero que caen a través de un liquido y se mide la velocidad de caída. Las esferas mas lentamente en los líquidos mas viscosos.



 TENSIÓN SUPERFICIAL
En un liquido, cada molécula se desplaza siempre bajo influencia de sus moléculas vecinas. Una molécula cerca del centro del liquido, experimenta el efecto de que sus vecinas la atraen casi en la misma magnitud en todas direcciones. Sin embargo, una molécula en la superficie del liquido no esta completamente rodeado por otras y, como resultado, solo experimenta la atracción de aquellas moléculas que están por abajo y a los lados. Por lo tanto la tensión superficial actúa en un liquido perpendicular a cualquier línea de 1cm de longitud en la superficie del mismo.




 Volatilidad

 Es decir, facilidad para evaporarse. Esta propiedad se aprecia claramente al dejar abierto un frasco con alcohol, en que se percibe su olor y disminuye el volumen.
La volatilidad en el contexto de la química, la física y la termodinámica es una medida de la tendencia de una sustancia a pasar a vapor. Se ha definido también como una medida de la facilidad con que una sustancia se evapora. A una temperatura dada, las sustancias con mayor presión de vapor se evaporan más fácilmente que las sustancias con una menor presión de vapor.



Aunque por lo general se aplica a líquidos, la volatilidad se puede aplicar a materiales sólidos como el hielo seco (sólido de dióxido de carbono y el cloruro de amonio, que pueden cambiar directamente de sólido a vapor sin convertirse en líquido. El paso directo de sólido a vapor se llama sublimación.


Volatilidad, una sustancia será más volátil cuando se evapore más fácilmente, es decir cuando posea menores fuerzas intermoleculares.

Cuando la velocidad de las moléculas que abandonan la superficie del líquido (evaporación) es igual a la velocidad de las moléculas que regresan al líquido (condensación), se establece un equilibrio dinámico. En este momento ya no se modifica la cantidad de moléculas en el estado vapor.
El vapor ejerce entonces una presión constante conocida como presión de vapor del líquido.

La presión de vapor de un líquido depende de la temperatura: a mayor T, mayor es la Pvapor.

Recuerda
La presión de vapor de un líquido a una temperatura determinada es la presión ejercida por su vapor cuando los estados líquidos y gaseoso están en equilibrio dinámico.
A mayor intensidad de la fuerza intermolecular:
·         menor volatilidad
·         menor presión de vapor
presión de vapor y temperatura


Presión de un vapor en equilibrio con su forma líquida, la llamada presión de vapor, sólo depende de la temperatura; su valor a una temperatura dada es una propiedad característica de todos los líquidos.
También lo son el punto de ebullición, el punto de solidificación y el calor de vaporización (esencialmente, el calor necesario para transformar en vapor una determinada cantidad de líquido).


En ciertas condiciones, un líquido puede calentarse por encima de su punto de ebullición; los líquidos en ese estado se denominan súper calentados. También es posible enfriar un líquido por debajo de su punto de congelación y entonces se denomina líquido súper enfriado.


¿Qué es presión a vapor?


La presión de vapor es la presión de la fase gaseosa o vapor de un sólido o un líquido sobre la fase líquida, para una temperatura determinada, en la que la fase líquida y el vapor se encuentra en equilibrio dinámico; su valor es independiente de las cantidades de líquido y vapor presentes mientras existan ambas. Este fenómeno también lo presentan los sólidos; cuando un sólido pasa al estado gaseoso sin pasar por el estado líquido (proceso denominado sublimación o el proceso opuesto llamado sublimación inversa) también hablamos de presión de vapor. En la situación de equilibrio, las fases reciben la denominación de líquido saturado y vapor saturado. Esta propiedad posee una relación inversamente proporcional con las fuerzas de atracción intermoleculares, debido a que cuanto mayor sea el módulo de las mismas, mayor deberá ser la cantidad de energía entregada (ya sea en forma de calor u otra manifestación) para vencerlas y producir el cambio de estado.


Imaginemos una burbuja de cristal en la que se ha realizado el vacío y que se mantiene a una temperatura constante; si introducimos una cierta cantidad de líquido en su interior éste se evaporará rápidamente al principio hasta que se alcance el equilibrio entre ambas fases.
Inicialmente sólo se produce la evaporación ya que no hay vapor; sin embargo a medida que la cantidad de vapor aumenta y por tanto la presión en el interior de la ampolla, se va incrementando también la velocidad de condensación, hasta que transcurrido un cierto tiempo ambas velocidades se igualan. Llegados a este punto se habrá alcanzado la presión máxima posible en la ampolla (presión de vapor o de saturación) que no podrá superarse salvo que se incremente la temperatura.


El equilibrio dinámico se alcanzará más rápidamente cuanto mayor sea la superficie de contacto entre el líquido y el vapor, pues así se favorece la evaporación del líquido; del mismo modo que un charco de agua extenso pero de poca profundidad se seca más rápido que uno más pequeño pero de mayor profundidad que contenga igual cantidad de agua. Sin embargo, el equilibrio se alcanza en ambos casos para igual presión.
El factor más importante que determina el valor de la presión de saturación es la propia naturaleza del líquido, encontrándose que en general entre líquidos de naturaleza similar, la presión de vapor a una temperatura dada es tanto menor cuanto mayor es el peso molecular del líquido.


Por ejemplo, el aire al nivel del mar saturado con vapor de agua a 20ºC, tiene una presión parcial de 23 mbar de agua y alrededor de 780 mbar de nitrógeno, 210 mbar de oxígeno y 9 mbar de argón.


¿Qué es Temperatura?


La temperatura es una magnitud referida a las nociones comunes de caliente, tibio, frío que puede ser medida, especificamente, con un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como "energía cinética", que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más "caliente"; es decir, que su temperatura es mayor.


En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).
Dicho lo anterior, se puede definir la temperatura como la cuantificación de la actividad molecular de la materia.
El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.


Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.


La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor "cero kelvin" (0 K) al "cero absoluto", y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius (antes llamada centígrada); y, en mucha menor medida, y prácticamente sólo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y sólo en algunos campos de la ingeniería.



Presión de vapor y punto de ebullición  

Relación entre las presiones de vapor y los puntos normales de ebullición de los líquidos.

La presión de vapor es la presión de un vapor que está en desequilibrio con sus fases no vaporizadas (es decir, líquido o sólido). Muy a menudo el término se utiliza para describir la tendencia de un líquido a vaporizarse Se trata de una medida de la tendencia de las moléculas y átomos para escapar de un líquido o un sólido. Un punto de ebullición de un líquido a presión atmosférica corresponde a la temperatura en la que su presión de vapor es igual a la presión atmosférica circundante y a menudo se denomina punto de ebullición normal.
Cuanto mayor sea la presión de vapor de un líquido a una temperatura determinada, mayor es la volatilidad y el menor punto de ebullición normal del líquido.


El gráfico de presión de vapor a la derecha tiene los gráficos de las presiones de vapor frente a la temperatura de una variedad de líquidos. Como puede verse en el gráfico, los líquidos con la presión de vapor más elevada tienen los puntos de ebullición normales más bajos.
Por ejemplo, a cualquier temperatura dada, el propano tiene la mayor presión de vapor de los líquidos de la tabla. También tiene el menor punto de ebullición normal (-42,1 ° C), que es donde la curva de presión de vapor del propano (línea lila) cruza la línea de presión horizontal de una atmósfera de presión de vapor absoluta.


El punto de ebullición es aquella temperatura en la cual la materia cambia de estado líquido a estado gaseoso, es decir hierve. Expresado de otra manera, en un líquido, el punto de ebullición es la temperatura a la cual la presión de vapor del líquido es igual a la presión del medio que rodea al líquido.[1] En esas condiciones se puede formar vapor en cualquier punto del líquido.


La temperatura de una sustancia o cuerpo depende de la energía cinética media de las moléculas. A temperaturas inferiores al punto de ebullición, sólo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar. Este incremento de energía constituye un intercambio de calor que da lugar al aumento de la entropía del sistema (tendencia al desorden de las partículas que lo componen).
fuerzas intermoleculares de esta sustancia. Para ello se debe determinar si la sustancia es covalente polar, covalente no polar, y determinar el tipo de enlaces (dipolo permanente - dipolo inducido o puentes de hidrógeno).